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Abstract ings as well as distributed nonlinearities due to elastic
deformations in riveted, screwed and bolted connections.

The characterisation of the behaviour of nonlinear aeroe- Since then, several investigations of nonlinear aeroelastic
lastic systems has become a very important research behaviour have been conducted, most of which concen-
topic. Nevertheless, most of the work carried out to date trated on structural and aerodynamic nonlinearities. The
concerns the development of unsteady CFD solutions in whole area of prediction and characterisation of LCO has
the transonic region. Important though this work is, there been defined as being an area of critical research inter-
is also a need for research which aims at understanding est [3]. However, most work has concentrated upon the
the behaviour of nonlinear systems, particularly the occu- development of unsteady CFD solutions [4] primarily in
rance of Limit Cycle Oscillations (LCOs). The purpose the transonic region. Some recent notable exceptions are
of this paper is to study the stability of a simple aeroser- the experimental work carried out by Holden et al [5] and
voelastic system with nonlinearities in the control sys- Conner et al [6] as well as various numerical studies such
tem. The work considers both structural and control law as [7].
nonlinearities and assesses the stability of the system re- The increasing power of modem computers allowed
sponse by use of bifurcation diagrams. It is shown that the use of increasingly computationally intensive math-
simple feedback systems designed to increase the stabil- ematical tools for the characterisation of nonlinear be-
ity of the linearised system also stabilise the nonlinear haviour, such as bifurcation plots [8] and parameter-space
system, although their effects can be less pronounced. sections [9]. Limit Cycle Oscillations (LCOs) have been
Additionally, a nonlinear control law designed to limit observed and explained in terms of Hopf bifurcations
the control surface pitch response was found to increase [10] and the possibility of LCO control and suppression
the flutter speed considerably by forcing the system to has been investigated [11], [12]. However, the main sub-
undergo limit cycle oscillations instead of fluttering. Fi- ject of all this research has been structural nonlinearities
nally, friction was found to affect the damping of the sys- and, to a lesser extent, aerodynamic nonlinearities [13].
tem but not its stability, as long as the amplitude of the Little research has been conducted into the effects of non-
frictional force is low enough not to cause stoppages in linearities in the control system even though, with the ad-
the motion. vent of Active Control Technology (ACT), control sys-

tems are becoming increasingly nonlinear. Aeroservoe-
lasticity [14] is a relatively recent research topic which is

1 Introduction generally dominated by case studies such as [15].
Stability is of paramount importance in the design of

Over the past two decades there has been a pronounced all control systems whether they be linear or nonlinear.
increase in research into nonlinear aeroelasticity. It has However, the performance of nonlinear aeroservoelastic
been known for quite some time that aircraft contain a systems throughout the desired flight envelope as well as
number of nonlinearities which can significantly affect their interaction with non-designed nonlinearities, such
vibratory characteristics. These nonlinearities give rise as backlash in the linkage elements of the control system,
to phenomena (e.g. Limit Cycle Oscillations (LCO)) that has not been thoroughly investigated.
cannot occur if the system is linear. Consequently, it is In this paper, the aeroservoelastic behaviour of a num-
impossible to model and predict such behaviour using a ber of simulated systems is investigated and charac-
linear analysis. This limitation is becoming of increasing terised. The purpose of the work is to give an overview of
importance with the latest generations of aircraft. possible nonlinear behaviour that may occur either near

Some early work on nonlinear aeroelasticity [1] flutter, or as a result of the interaction of the control sys-
showed that limited amplitude oscillations in aircraft are tem with structural nonlinearities. Partricular emphasis is
nonlinear phenomena. Breitbach [2] identified a number given to assessing whether control laws designed to im-
of sources of nonlinearity in aircraft such as kinematic de- prove the stability of linear systems also have a stabilising
flections of control surfaces, solid friction in hinge bear- influence on nonlinear systems. The simulated systems

Paper presented at the RTO AVT Specialists' Meeting on "Structural Aspects of Flexible Aircraft Control",
held in Ottawa, Canada, 18-20 October 1999, and published in RTO MP-36.
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considered contain a variety of nonlinearities that can oc- function, depicted in figure 4. In this case, the stiffness in
cur in the control system, ranging from nonlinear springs the inner region is zero. Again, the freeplay affects both
in the control actuator to nonlinear control laws. control surface velocity and displacement.

2 Simulated aeroservoelastic sys- 2.3 Backlash in PCU spring

tems Backlash is a piecewise linear hysteretic nonlinearity.
Figure 5 shows the variation of the force in the PCU with

The basis of all the systems investigated in this work is control surface deflection during a Limit Cycle Oscilla-

an extension of the Hancock aeroelastic model [16]. The tion, in the presence of backlash in the pressure feedback

basic Hancock model is a rigid wing with two springs spring. Whenever the control surface pitch changes direc-

at the wing root, giving the system two degrees of free- tion, the force in the PCU jumps from one of the sloped

dom, heave and pitch. The aerodynamics is modelled us- lines to the other. The horizontal distance between the

ing quasi-steady strip theory with approximate unsteady two branches is called the backlash distance. Such be-

aerodynamic derivatives. The model used here also in- haviour can be observed for example in the bearings of

eludes a control surface [12], i.e. it incorporates an ad- all-movable control surfaces of military aircraft [17]. In

ditional degree of freedom. The control surface is driven the american literature backlash is sometimes referred to

by a Power Control Unit (PCU) or Power Actuator. The as freeplay however, in this paper, the terms backlash and

PCU provides both stiffness and structural damping. The freeplay denote two distinct types of nonlinearity.

basic simulated system, which is shown in figure 1, was As with bilinear stiffness and freeplay, backlash affects

modified by the addition of a number of nonlinearities both the velocity and displacement of the control surface

giving rise to four different systems, with two possible of the system investigated here.

control laws.

2.4 Friction in PCU
2.1 Bilinear PCU spring This case models friction between the piston seals and

The Power Control Unit contains a pressure feedback the chamber. The friction depends on the piston velocity,
spring, as shown in figure 2. The first system examined hence the force, F, in the piston is given by
in this paper has a bilinear pressure feedback spring. Bi-
linear stiffness is a piecewise linear function shown in F = A, P + FRsgn( 3 ) (2)
figure 3. The stiffness, K1, in the inner region (delimited where FR is the magnitude of the friction force. Gen-
by ±• in figure 3) is lower than the stiffness in the outer erally, it was assumed that FR was low enough to allow
region, K 2. movement of the piston without stoppages.

This is not a straightforward case of bilinear stiffness
in the control surface since, because the bilinear spring is
in the PCU, it affects the control surface velocity as well 2.5 Delayed Feedback
as displacement. The PCU equation is A displacement feedback loop was added to the linear

system, in order to increase the separation of the natu-
VKF + vral frequencies. The feedback gains were calculated such
4N that the separation of the two closest natural frequencies

pd KFKV VP/2 P - ptdKFKV V/P5 /2l3i (1) was increased by 20%. The changes in the natural fre-
quencies at a speed of 40m/s are tabulated in table 1

where V is the volume of the PCU, N is the bulk mod-
ulus of oil, Pj is the difference of pressures in the two Open Loop Closed Loop
PCU compartments P1 and P2 (see figure 2), Kv is a 37.2441 tlz 46.3668 Hz
valve flow constant, AF is the effective area of the pres- 14.3522 Hz 15.2619 Hlz
sure sensing chamber, P, is the supply pressure, KF is 8.7812 Hz 8.4752 Hz
the stiffness of the pressure feedback spring, p is the lever
arm ratio, d is the distance between the PCU axis and the Table 1: Open and closed-loop natural frequencies of lin-
wing chord, 13 is the control surface deflection and /3j is ear system at V=40m/s
the demand angle. It can be seen that KF multiplies both
the fi and /3 terms. Hence, a nonlinear pressure feedback A further consequence of the displacement feedback was
spring affects both control surface velocity and displace- that the flutter speed of the linear system was increased
ment. by 1.9%. Figures 6 and 7 show the open and closed

loop natural frequencies and dampings respectively for

2.2 Freeplay in PCU spring a range of airspeeds. The open loop eigenvalues were ob-
tained by direct solution of the system equations of mo-

In this case, the pressure feedback spring contains tion while the eigenvalues of the closed loop system were
freeplay. Freeplay stiffness is also a piecewise linear calculated by curve-fitting the impulse response, hence
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they look less smooth. The figures show that all the nat- systems, whose behaviour changes with airspeed, phase-
ural frequencies of the closed-loop system are more sep- plane plots are not sufficient to determine their stability.
arated than those of the open loop system and that, even To this purpose it is necessary to use bifurcation plots,
though the damping of the critical degree of freedom in which can track the stability of a system over any range of
the closed loop system is lower, the closed loop flutter airspeeds. Bifurcation plots can be constructed by obtain-
speed is higher than that of the open loop system. ing the impulse response of a system and then calculating

To simulate the fact that real control systems do not the displacement of one of the degrees of freedom when
act spontaneously, the feedback signal was delayed by the velocity of the same degree of freedom is zero. If the
nAt seconds, where n can be varied. The delayed feed- system is undergoing a limit cycle at a particular velocity,
back control system was also used in conjunction with then the values of the displacement will be repeated. For
the freeplay, bilinear, backlash and friction nonlinearities example, in the case of figure 8, when, the displacement
mentioned above. takes two values at zero velocity. In figure 9, there are

six possible values of the displacement at zero velocity.
2.6 Control Surface pitch limit A bifurcation plot is obtained when all the values of the

displacement when the velocity of that DOF is zero are
An active control system was devised to limit the control plotted against airspeed.
surface pitch. Initially, it was assumed that the control Figure 10 shows a bifurcation plot for the system with
system knows at all times the exact value of the control bilinear pressure feedback spring described earlier. For
surface pitch. The pitch, r3, at time t is used in conjunc- airspeeds where the system is stable (up to 45 m/s), only
tion with the value of the pitch at time t - At to predict zeros are plotted. Between 45 mi/s and just over 52 m/s,
fl (t + At) using linear curve-fitting, i.e. the system undergoes LCOs. The limit cycles are period-

1, hence there are only two points plotted at each air-
f3 (t + At) = 2,3 (t) - /3 (t - At) speed. The amplitudes of the limit cycles increase almost

linearly up to approximately 51 mis. Between 51 and
If/3 (t + At) exceeds a given limit, !3 tim, then the control 52 m/s, the amplitudes increase exponentially, which is
system feeds back -K/3 through the actuator, where K a sign that the system is close to instability. At speeds
is some constant. Since a real control system would not above 52 m/s, the system becomes completely unstable
be able to instantaneously complete all the calculations, and flutters.
acquire the current value of /3 and feed it to the actuator,
the feedback in the simulated system is delayed by At.

4 Stability of the Aeroservoelastic
3 Limit Cycle Oscillations and bi- Systems

furcation diagrams The impulse response of the non-linear systems described
in section 2 were calculated for a range of different air-

For a single degree-of-freedom system, a Limit Cycle Os- speeds. Bifurcation plots were then generated in order to

cillation (LCO) is a limited amplitude oscillation occur- crerise the li t Cycle bhvor.

ring around a line singularity in the phase-plane called a

limit cycle. Such a limit cycle can be seen in figure 8.
The figure plots velocity (/3) against displacement (/3) for 4.1 Stability of Bilinear System
a system undergoing LCO. The resulting curve is the limit
cycle. Limit cycles are singularities since they can either As mentioned already, figure 10 is the bifurcation plot for
attract the phase trajectories (stable limit cycle) or repel the system with bilinear pressure feedback spring. There
them (unstable limit cycle). In the case of figure 8, where are three distinct regions of stability, tabulated in table 2.
a stable limit cycle is shown, the system response will al-
ways wind onto the limit cycle both from the inside and Airspeed (m/s) Stability
from the outside. In turn, this signifies that the limit cy- < 45.2 Stable
cle cannot be crossed. A limit cycle can be classed as 45.2-52.2 Period-1 Limit Cycle
period-I, period-2, etc depending on its complexity. Fig- > 52.2 Unstable (flutter)
ure 8 shows a limit cycle with only one loop, i.e. period-
1. A period-3 limit cycle, with three loops, can be seen in Table 2: Stability of bilinear system
figure 9.

For a multiple degree-of-freedom system, a limit cy- Systems with bilinear systems have already been exten-
cle is a multi-dimensional singularity, its dimensions be- sively analysed in previous work such as reference [18].
ing equal to the number of states in the system. How- The purpose of this section is to investigate the effects of
ever, limit cycles can still be visualised using phase-plane bilinearity in conjunction with control action to the stabil-
plots of the type shown in figures 8 and 9, provided ity of an aeroservoelastic system. Hence, results are pre-
the velocity and displacement for the same degree-of- sented from the coupling of the bilinear system with the
freedom (or mode) is plotted. In the case of aeroelastic displacement feedback of section 2.5. It has already been
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mentioned that the displacement feedback system was de- that freeplay is a much more nonlinear function than bi-
signed to stabilise the linear aeroservoelastic system. The linear stiffness and that its effects are more pronounced.
two main considerations in this section are whether the With the reference to the system investigated here, it
feedback system can also stabilise the bilinear system and should be noted that, since the stiffness is zero inside the
also what are the effects of delaying the feedback. It is freeplay region, the only source of stiffness in the control
of interest to note that the system with bilinear stiffness surface pitch direction is aerodynamic stiffness. This in
undergoes LCOs at airspeeds above the flutter speed of turn signifies that LCOs are expected to be encountered
the linear system with stiffness K1 and below the flutter at lower airspeeds than in the bilinear system.
speed of the linear system with stiffness K 2 . Figure 13 is the bifurcation plot for the system with

Figure 11 shows the bifurcation diagram for the bilin- freeplay in the pressure feedback spring but no feedback.
ear system with feedback (not delayed). It can be seen The first limit cycles appear at 19m/s and they are period-
that LCOs only begin to occur at airspeeds higher than 2. At approximately 33m/s the limit cycles change to
49 m/s. Additionally, up to approximately 51.5 m/s the period-I. Finally, the system flutters at 52m/s (see ta-
amplitudes of the limit cycles are very low. Flutter oc- ble 5).
curs at 54 m/s. The stability of the system is summarised
in table 3 Airspeed (m/s) Stability

< 19 Stable
Airspeed (mis) Stability 19-33 Period-2 Limit Cycle

< 49 Stable 33-52 Period-1 Limit Cycle
49-54 Period-I Limit Cycle > 52 Unstable (flutter)
> 54 Unstable (flutter)

Table 5: Stability of freeplay system without feedback
Table 3: Stability of bilinear system with undelayed feed-
back Figure 14 shows the bifurcation diagram for the

freeplay system with undelayed feedback. The system

Consequently, the effect of the feedback was to stabilise is stable up to an airspeed of 20m/s when period-3 limit
the system, despite the bilinear actuator spring. Limit cy- cycles appear. The amplitude of the limit cycles increase
des appear later than in the open loop system and they slowly until 53m/s when the system begins to undergo
are of lower amplitude. Additionally, flutter is delayed period-4 LCOs. Finally, flutter occurs at 55 mis. The
by approximately 3%. stability summary in table 6 shows that the feedback has

Delaying the feedback signal by one simulation time- stabilised the system by delaying the appearance of LCOs
step has an adverse effect on the stability of the closed- by imis and delaying flutter by 3m/s. Additionally, the

loop system. Figure 12 shows the bifurcation diagram for amplitudes of all limit cycles are lower than in the open
the bilinear system with delayed feedback. Limit cycles loop system. However, the stabilisation is not as radical
(period-1) first appear at 46 mis but their amplitudes re- as it was with the bilinear system.
main low up to an airspeed of just over 48 mis. At 51
m/s, the limit cycles change to period-3. Finally, at 52.5 Airspeed (m/s) Stability

mis the system starts to flutter. Table 4 summarises the < 20 Stable
information from figure 12. 20-53 Period-3 Limit Cycle

53-55 Period-4 Limit Cycle

Airspeed (m/s) Stability > 55 Unstable (flutter)
< 46 Stable<465 Pi ta C le Table 6: Stability of freeplay system with undelayed

46-51 Period- 3 Limit Cycle feedback51-52.5 Period-3 limit Cycle

> 52.5 Unstable (flutter) Finally, figure 15 shows the bifurcation diagram for

Table 4: Stability of bilinear system with delayed feed- the freeplay system with delayed feedback. Limit cycles
back first appear at 20m/s and are period-3, as with the unde-

layed feedback however, in this case there are no period-4

Nevertheless, the system with delayed feedback is more LCOS. Flutter occurs at 53mis.

stable than the open-loop system since limit cycles appear Airspeed (m/s) Stability
later and are initially of much smaller amplitude. < 20 Stable

20-53 Period-3 Limit Cycle
4.2 Stability of freeplay system > 53 Unstable (flutter)

As with bilinear stiffness, freeplay has been already thor- Table 7: Stability of freeplay system with delayed feed-
oughly investigated, most recently in [7] and [6]. Here, back
the effect of freeplay in conjunction with displacement
feedback is of interest. Firstly, it should be mentioned Figure 15, as well as table 7, show that the main effect
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of the delay is to decrease the flutter airspeed. Never- Airspeed (mis) Stability
theless, as with the bilinear case, the delayed feedback < 44 Stable
system is more stable than the open loop system since 44-52.5 Low amplitude Period-1 Limit Cycle
flutter occurs lm/s later and the limit cycles have smaller > 54.3 Unstable (flutter)
amplitudes.

Table 10: Stability of freeplay system with delayed feed-

4.3 Stability of system with backlash back

Figure 16 is the bifurcation plot for the open-loop system rection of the delayed displacement feedback is still un-
with backlash in the pressure feedback spring. The sys- changed and therefore the backlash region of figure 5 is
tem is stable up to an airspeed of 44m/s when very low shrunk, thus diminishing the effect of the nonlinearity.
amplitude period-I limit cycles appear. At approximately
51.5m/s the system flutters (see table 8). Hence, backlash
decreases the flutter velocity of a system and introduces 4.4 Stability of system with control surface
small amplitude limit-cycles at the high subcritical air- pitch limit
speed range. The nonlinear function described by the control scheme

Airspeed________Stability _presented in section 2.6 is shown in figure 19. The feed-
Airspeed (mis) Stability back signal is zero unless the linear extrapolation of 3, the

< 44 Stable control surface pitch degree of freedom, suggests that the
44-51.5 Period-1 Limit Cycle value of f3 in the next step will be higher than the defined
> 51.5 Unstable (flutter) pitch limit, in which case the feedback signal is equal to

-a13 where a is a gain coefficient. Consequently, it is ob-
Table 8: Stability of backlash system without feedback vious that, if the pitch limit were equal to zero, then the

control law would be a linear proportional feedback. For
Figure 17 displays the bifurcation diagram for the sys- the purposes of this work, the limit was set to +100.

tem with backlash in the pressure feedback spring and The effectiveness of the control scheme is demon-
undelayed feedback. Again, the first limit cycles ap- strated in figure 20 where the control surface pitch is plot-
pear at 44m/s and are low amplitude period-1. How- ted against time. The dashed line is the demand signal fed
ever, flutter is delayed beyond the flutter airspeed of the to the control surface through the power control unit. It
linear system by high amplitude period-1 LCOs in the can be seen that pitch rarely exceeds the limit of 10', even
range 52.5-53.5mis. After 53.5m/s continuous bifurca- though the demand angle is 12'.
tions to higher period limit cycles occur. Such behaviour Since the control system only engages when the con-
is termed period-doubling [12] and is an indication of im- trol surface pitch lies near the limit, it does not affect
minent instability either to flutter or to chaotic behaviour, the decaying impulse response of the system. Hence,
In this case period-doubling leads to flutter at 53.8m/s. self-excited oscillations are only possible when the lin-

ear system flutters. In other words, the control system
Airspeed (m/s) Stability contains flutter by constraining the system response onto

< 44 Stable a limit cycle. This can be seen in figure 21 where the bi-
44-52.5 Low amplitude Period-I Limit Cycle furcation diagram for the pitch limited system is shown.

52.5-53.5 High amplitude Period-I Limit Cycle Up to 52.7m/s, the flutter speed of the linear system,
53.5-53.8 Period doubling the response is decaying. Limit cycles exist at airspeeds

> 53.8 Unstable (flutter) between 52.7mT s and 57.7mis. Beyond this range, the
closed-loop system flutters.

Table 9: Stability of backlash system with feedback, no

delay Airspeed (m/s) Stability
< 52.7Stable

Finally, figure 18 shows the bifurcation diagram for the <52.7 S tab le

backlash system with delayed feedback. The behaviour 5.57.7 Unstable (fle

of the system is identical to that of the undelayed system

up to an airspeed of 53.5m/s. In this case however, period Table 11: Stability of system with control surface pitch
doubling-behaviour does not take place. Instead, the high limit
amplitude period-1 limit cycle behaviour continues up to
an airspeed of just over 54 mis when the system begins to It can be seen from the figure that the limit cycles are very
flutter, complex since many points appear at each airspeed, in

Consequently, unlike the bilinear and freeplay cases, fact so many that it is impossible to classify the limit cy-
delayed feedback increases the stability of the backlash des in terms of period. A phase-space plot of a limit cycle
system by delaying flutter. This phenomenon is due to at an airspeed of 55m/s is shown in figure 22. The com-
the nature of the backlash function itself. When the con- plicated shape of the limit cycles is due to the simplistic
trol surface pitch displacement changes direction, the di- manner in which the value of the control surface pitch
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at the next time step is calculated. A more detailed pre- The linear feedback that was applied still helped to sta-
diction algorithm would give rise to better behaved limit bilise the system, even with the presence of nonlineari-
cycles but would be less realistic, ties. Delays in the feedback signals reduced the effec-

tiveness of the control in all systems apart from the sys-

4.5 Stability of system with friction in the tem with backlash. If this delay was too great, then insta-
4.5 Sbility occurred almost immediately. A nonlinear control

law designed to limit the control surface pitch response

Friction is a mechanism that removes energy from the was found to increase the flutter speed considerably by

motion of a system. Given that the amplitude of the fric- forcing the system to undergo limit cycle oscillations in-

tional force, FR, is low enough not to cause stoppages, its stead. Friction was not found to alter the stability of any

main effect is to increase the damping present in the mo- of the systems investigated here as long as its amplitude

tion. A frictional force of varying amplitude was added was low enough not to cause stoppages in the motion.

to the open-loop linear, freeplay and bilinear systems. As
was expected, the main consequence for all the systems
was an increase in damping. This effect can be observed References
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Figure 8: Phase-space diagram of period-i limit cycle
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Figure 25: Variation of flutter speed of bilinear and
0.08.freeplay systems with increasing frictional amplitude

0.06

0.04

0 0.1 0.2 0.3 0.4 0.5 0.s 0.7 0.6 0.9 1

Figure 23: Comparison of responses of frictionless sys-
tem and system with friction at V=3Omls .

0.05-

0.

0.08 0.06

110 4 
-0.05

-0.15

A A -0.21
0 0.0 1 0.0 2 2.5

Figure 26: Comparison of responses of bilinear system
-9.92 Wwith and without friction at V=5Om./s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.0 1 .0 2
tim.1.W

Figure 24: Comparison of responses of frictionless sys-
tem and system with friction at V=52m~s


